Information dynamics of industry
——摘选自Carbontech《打破近30年记录!哈工大金刚石半导体器件重大突破》
近日,哈工大红外薄膜与晶体团队创新提出过渡金属(TMs)金属化方法,首次在绝缘的氧终端本征金刚石(OTD)表面制备出了有效欧姆接触,10-8 Ωcm2级别极低比接触电阻打破了金刚石器件领域近三十年的记录。通过对界面结构的微观表征,发现TMs扩散进金刚石中产生的浅层晶格损伤是形成欧姆接触的关键原因,改变了界面过渡金属碳化物(TMC)的生成是金刚石欧姆接触的成因这一传统认知。从而扩展了在金刚石上制备稳定低阻欧姆接触的方法与理论,有望推动金刚石基高频高功率电子器件与高性能光电器件产业的发展。
权威之声
中国储能网讯:近期,碳酸锂社会库存持续去化。据SMM数据,截至9月27日当周,碳酸锂周度库存为12.46万吨,环比减少2095吨。其中,上游去库5035吨,下游和其他环节累库2939吨。值得关注的是,这已是碳酸锂连续5周呈现去库态势。
市场人士认为,碳酸锂库存持续去化并不意味着碳酸锂基本面拐点已经到来。
对于9月碳酸锂库存持续下降的原因,中信建投期货分析师张维鑫解释称,一方面是因为碳酸锂的低价对生产端的制约已有所体现,另一方面则是随着旺季来临,碳酸锂需求端环比有较大增长。供减需增的背景下,碳酸锂库存连续下降。
“9月以来,碳酸锂市场供需因素出现了明显变化,尤其是供应方面,矿端连续出现减停产消息,同时连续数月国内锂矿进口和碳酸锂进口环比明显下降,低价显然影响到矿山的生产和发货意愿。需求方面,汽车和电池环节价格战引发的观望心态逐步消退,而低价带来的三大效应(出口扩张、加速替代和收入效应)在增强。7月以来,新能源汽车销售增速好于年初预期与上半年的增速。”国投安信期货分析师吴江也解释称,尽管环比来看供需出现了明显逆转,但是9月的平衡表呈现阶段性的紧平衡,月均有3000吨左右的需求短缺,因此呈现去库态势。
谈及去库情况,多位业内人士告诉期货日报记者,此轮去库对基本面的边际改善相对有限。
“这种去库属于特定情况下的表现,更多属于供给和需求在节奏上的错配。”张维鑫认为,随着“金九银十”结束,环比需求预计会有较大回落,其中包括订单增长放缓、中间环节去库等因素,会带来上游材料需求减少。从供给端来看,随着碳酸锂价格来到一个相对均衡的位置,并维持较窄幅波动,生产端预计会有所恢复,去库状态继续维持的时间并不会太长久。一方面,未来一段时间内,仍有锂资源投产并爬坡,供给端大概率继续保持增长趋势,需求端增长则放缓。因此,在强现实与弱预期的矛盾下,供需关系虽有短期改善,但中长期仍不容乐观。另一方面,当下大背景仍然是供大于求,若价格出现明显反弹,解除了对供给的限制,产能出清无法实现,供大于求的局面会更加严峻,反过来会对价格形成压制。
“连续5周维持去库态势,反映出碳酸锂的基本面阶段性转好,但实际边际改善力度相对有限。”国信期货分析师顾冯达也认为,从中长期视角来看,供应端目前尚未见到规模化的减停产,同时锂盐新项目计划投产增量仍较为显著,供大于求预计仍然是中长期主基调。
从终端需求来看,在全球新能源汽车销量增速放缓的背景下,中国市场依旧展现出强劲的增长势头,新能源汽车在旺季的表现成为碳酸锂需求环比增长的重要支撑点。据乘联会数据,9月中国大陆乘用车零售销量预计将达到210万辆,同比增长4.0%。其中,新能源乘用车(NEV)的销量预计将达到110万辆,同比增长47.3%。9月份,新能源汽车销量预计将占中国大陆乘用车销量的52.4%。
有行业人士表示,近期政策端的多项利好信号进一步提振了市场信心,如新能源车购置补贴政策的延续、新能源车下乡活动等,均有望激发市场活力。随着充电基础设施不断完善和环保政策持续推进,中国新能源汽车的市场渗透率将进一步提升,市场规模也有望继续扩大,为全球新能源汽车产业注入更多动力。
“当下,随着政策发力,股票市场显著回暖,地产市场亦有企稳迹象,居民资产负债表修复,汽车消费有望得到提振。”张维鑫认为,从这个角度来看,今年新能源汽车“金九银十”的销售表现及四季度销量可以适度上调,进而会增加碳酸锂需求,这是政策从基本面对碳酸锂价格产生支撑的路径。最终的改善幅度还要关注政策后续落地情况。
吴江也认为,尽管当前处于消费旺季,叠加以旧换新和促进消费措施的加持,在国庆假期前后,新能源汽车消费或能有效带动碳酸锂需求阶段性改善,但后市需要关注政策向更广泛领域的落地状态,包括全球范围内可能的再通胀倾向。
展望后市,当前碳酸锂价格是否已经迎来拐点,市场存在较大分歧。方正中期期货分析师魏朝明认为,当前,碳酸锂需求超预期向好,新能源汽车需求向好也带动中间环节库存去化,加之当前宏观情绪向好,或与短周期供需面改善形成共振,后市有望看高一线。顾冯达也认为,虽供过于求的基本面格局尚未得到有效改善,但政策利好支撑商品板块整体上行,碳酸锂或将步入阶段性宽幅震荡区间,后续需重点关注供应端情况及客供比例的改变。张维鑫则认为,尽管碳酸锂短期内确实有一些利好,但价格反弹高度不宜过度乐观,10月份大概率会是基本面拐点,同时也有可能成为下一轮下跌的起点。
出现了明显逆转,但是9月的平衡表呈现阶段性的紧平衡,月均有3000吨左右的需求短缺,因此呈现去库态势。
谈及去库情况,多位业内人士告诉期货日报记者,此轮去库对基本面的边际改善相对有限。
“这种去库属于特定情况下的表现,更多属于供给和需求在节奏上的错配。”张维鑫认为,随着“金九银十”结束,环比需求预计会有较大回落,其中包括订单增长放缓、中间环节去库等因素,会带来上游材料需求减少。从供给端来看,随着碳酸锂价格来到一个相对均衡的位置,并维持较窄幅波动,生产端预计会有所恢复,去库状态继续维持的时间并不会太长久。一方面,未来一段时间内,仍有锂资源投产并爬坡,供给端大概率继续保持增长趋势,需求端增长则放缓。因此,在强现实与弱预期的矛盾下,供需关系虽有短期改善,但中长期仍不容乐观。另一方面,当下大背景仍然是供大于求,若价格出现明显反弹,解除了对供给的限制,产能出清无法实现,供大于求的局面会更加严峻,反过来会对价格形成压制。
“连续5周维持去库态势,反映出碳酸锂的基本面阶段性转好,但实际边际改善力度相对有限。”国信期货分析师顾冯达也认为,从中长期视角来看,供应端目前尚未见到规模化的减停产,同时锂盐新项目计划投产增量仍较为显著,供大于求预计仍然是中长期主基调。
从终端需求来看,在全球新能源汽车销量增速放缓的背景下,中国市场依旧展现出强劲的增长势头,新能源汽车在旺季的表现成为碳酸锂需求环比增长的重要支撑点。据乘联会数据,9月中国大陆乘用车零售销量预计将达到210万辆,同比增长4.0%。其中,新能源乘用车(NEV)的销量预计将达到110万辆,同比增长47.3%。9月份,新能源汽车销量预计将占中国大陆乘用车销量的52.4%。
有行业人士表示,近期政策端的多项利好信号进一步提振了市场信心,如新能源车购置补贴政策的延续、新能源车下乡活动等,均有望激发市场活力。随着充电基础设施不断完善和环保政策持续推进,中国新能源汽车的市场渗透率将进一步提升,市场规模也有望继续扩大,为全球新能源汽车产业注入更多动力。
“当下,随着政策发力,股票市场显著回暖,地产市场亦有企稳迹象,居民资产负债表修复,汽车消费有望得到提振。”张维鑫认为,从这个角度来看,今年新能源汽车“金九银十”的销售表现及四季度销量可以适度上调,进而会增加碳酸锂需求,这是政策从基本面对碳酸锂价格产生支撑的路径。最终的改善幅度还要关注政策后续落地情况。
吴江也认为,尽管当前处于消费旺季,叠加以旧换新和促进消费措施的加持,在国庆假期前后,新能源汽车消费或能有效带动碳酸锂需求阶段性改善,但后市需要关注政策向更广泛领域的落地状态,包括全球范围内可能的再通胀倾向。
展望后市,当前碳酸锂价格是否已经迎来拐点,市场存在较大分歧。方正中期期货分析师魏朝明认为,当前,碳酸锂需求超预期向好,新能源汽车需求向好也带动中间环节库存去化,加之当前宏观情绪向好,或与短周期供需面改善形成共振,后市有望看高一线。顾冯达也认为,虽供过于求的基本面格局尚未得到有效改善,但政策利好支撑商品板块整体上行,碳酸锂或将步入阶段性宽幅震荡区间,后续需重点关注供应端情况及客供比例的改变。张维鑫则认为,尽管碳酸锂短期内确实有一些利好,但价格反弹高度不宜过度乐观,10月份大概率会是基本面拐点,同时也有可能成为下一轮下跌的起点。
“连续5周维持去库态势,反映出碳酸锂的基本面阶段性转好,但实际边际改善力度相对有限。”国信期货分析师顾冯达也认为,从中长期视角来看,供应端目前尚未见到规模化的减停产,同时锂盐新项目计划投产增量仍较为显著,供大于求预计仍然是中长期主基调。
从终端需求来看,在全球新能源汽车销量增速放缓的背景下,中国市场依旧展现出强劲的增长势头,新能源汽车在旺季的表现成为碳酸锂需求环比增长的重要支撑点。据乘联会数据,9月中国大陆乘用车零售销量预计将达到210万辆,同比增长4.0%。其中,新能源乘用车(NEV)的销量预计将达到110万辆,同比增长47.3%。9月份,新能源汽车销量预计将占中国大陆乘用车销量的52.4%。
有行业人士表示,近期政策端的多项利好信号进一步提振了市场信心,如新能源车购置补贴政策的延续、新能源车下乡活动等,均有望激发市场活力。随着充电基础设施不断完善和环保政策持续推进,中国新能源汽车的市场渗透率将进一步提升,市场规模也有望继续扩大,为全球新能源汽车产业注入更多动力。
“当下,随着政策发力,股票市场显著回暖,地产市场亦有企稳迹象,居民资产负债表修复,汽车消费有望得到提振。”张维鑫认为,从这个角度来看,今年新能源汽车“金九银十”的销售表现及四季度销量可以适度上调,进而会增加碳酸锂需求,这是政策从基本面对碳酸锂价格产生支撑的路径。最终的改善幅度还要关注政策后续落地情况。
吴江也认为,尽管当前处于消费旺季,叠加以旧换新和促进消费措施的加持,在国庆假期前后,新能源汽车消费或能有效带动碳酸锂需求阶段性改善,但后市需要关注政策向更广泛领域的落地状态,包括全球范围内可能的再通胀倾向。
展望后市,当前碳酸锂价格是否已经迎来拐点,市场存在较大分歧。方正中期期货分析师魏朝明认为,当前,碳酸锂需求超预期向好,新能源汽车需求向好也带动中间环节库存去化,加之当前宏观情绪向好,或与短周期供需面改善形成共振,后市有望看高一线。顾冯达也认为,虽供过于求的基本面格局尚未得到有效改善,但政策利好支撑商品板块整体上行,碳酸锂或将步入阶段性宽幅震荡区间,后续需重点关注供应端情况及客供比例的改变。张维鑫则认为,尽管碳酸锂短期内确实有一些利好,但价格反弹高度不宜过度乐观,10月份大概率会是基本面拐点,同时也有可能成为下一轮下跌的起点。
宏观政策
9月30日,河北省人民政府办公厅印发《高速公路服务区品质提升三年行动方案(2024-2026年)》(以下简称《方案》)的通知。
《方案》提到,强化规划用地保障。对服务区利用存量房产、土地资源,进行物流仓储、光伏发电等国家支持产业设施开发的,可依法依规享受在5年内不改变用地主体和规划条件的过渡期支持政策。过渡期满及涉及转让需办理改变用地主体和规划条件的手续时,除符合《划拨用地目录》的可保留划拨方式外,其余经批准可以协议方式办理供地手续。协议出让最低价不低于新增建设用地的土地有偿使用费、征地(拆迁)补偿费用以及按照国家规定应当缴纳的有关税费之和;有基准地价的地方,协议出让最低价不得低于出让地块所在级别基准地价的70%。
支持能源项目建设。支持服务区屋顶光伏项目集中打捆备案,在无可开放容量地方,通过配置储能、承诺优先参与电网调峰可不受开放容量限制。电网企业优化办电流程,与服务区布局规划衔接,统筹规划建设充电、储能、光伏设施。服务区分散式风电、分布式光伏项目,根据周边电网实际情况,就近接入电网。
原文链接:河北省人民政府办公厅关于印发高速公路服务区品质提升三年行动方案
行业聚焦
新一代光伏技术取得突破
针对钙钛矿太阳能电池高温工作条件下运行稳定性差这一领域难题,南开大学化学学院袁明鉴教授带领课题组开展高水平国际合作研究,成功制备出兼具高能量转换效率与高运行稳定性的钙钛矿太阳能电池器件,标志着新一代光伏技术取得重大突破。
9月30日晚,《自然》杂志以“兼具高效热稳定性的甲脒铯组分钙钛矿太阳能电池”为题,发表了这项研究成果。
钙钛矿是一类具有独特晶体结构的材料,广泛应用于新型太阳能电池等半导体器件。钙钛矿太阳能电池作为第三代光伏技术,其独特的柔性兼容性与大面积制备潜力,为光伏、物联网、新能源汽车乃至航天航空等领域带来前所未有的机遇。可这种新型太阳能电池的稳定性一直是限制其大规模商业应用的关键因素。钙钛矿材料作为电池的吸光层,其稳定性受外界环境因素影响显著。目前,高性能钙钛矿太阳能电池在制备过程中往往需要依赖易挥发的有机胺盐添加剂来稳定物相并调控结晶。然而,这种添加剂在高温条件下极易分解,引发钙钛矿薄膜化学组分失衡,进而显著降低电池在高温工况下的运行稳定性。
针对这一难题,袁明鉴带领研究团队结合理论预测,发展了一种具有更高热稳定性的合金钙钛矿制备策略,该策略彻底解决甲脒铯组分钙钛矿薄膜组分不均一的问题。利用该策略制备的钙钛矿太阳能电池器件,展现出世界一流的能量转换效率与高温工况稳定性。
研究团队协同探究材料关键难题。(受访者提供)
“此项研究不仅为钙钛矿太阳能电池的稳定性提升奠定了坚实的技术基础,也为光伏技术的进一步实用化和商业化开辟了广阔前景,对推动全球能源结构的绿色转型具有深远意义。”袁明鉴说。
袁明鉴表示,目前研究团队正通过校企合作,积极推进符合产业化需求的高性能钙钛矿太阳能电池模组的研发,力求尽快推动研究成果的实际应用与产业化落地。
依赖易挥发的有机胺盐添加剂来稳定物相并调控结晶。然而,这种添加剂在高温条件下极易分解,引发钙钛矿薄膜化学组分失衡,进而显著降低电池在高温工况下的运行稳定性。
结晶路径转变策略实现高效率高温工况稳定钙钛矿太阳能电池。(受访者供图)
针对这一难题,袁明鉴带领研究团队结合理论预测,发展了一种具有更高热稳定性的合金钙钛矿制备策略,该策略彻底解决甲脒铯组分钙钛矿薄膜组分不均一的问题。利用该策略制备的钙钛矿太阳能电池器件,展现出世界一流的能量转换效率与高温工况稳定性。
研究团队协同探究材料关键难题。(受访者提供)
“此项研究不仅为钙钛矿太阳能电池的稳定性提升奠定了坚实的技术基础,也为光伏技术的进一步实用化和商业化开辟了广阔前景,对推动全球能源结构的绿色转型具有深远意义。”袁明鉴说。
袁明鉴表示,目前研究团队正通过校企合作,积极推进符合产业化需求的高性能钙钛矿太阳能电池模组的研发,力求尽快推动研究成果的实际应用与产业化落地。
结晶路径转变策略实现高效率高温工况稳定钙钛矿太阳能电池。(受访者供图)
针对这一难题,袁明鉴带领研究团队结合理论预测,发展了一种具有更高热稳定性的合金钙钛矿制备策略,该策略彻底解决甲脒铯组分钙钛矿薄膜组分不均一的问题。利用该策略制备的钙钛矿太阳能电池器件,展现出世界一流的能量转换效率与高温工况稳定性。
“此项研究不仅为钙钛矿太阳能电池的稳定性提升奠定了坚实的技术基础,也为光伏技术的进一步实用化和商业化开辟了广阔前景,对推动全球能源结构的绿色转型具有深远意义。”袁明鉴说。
袁明鉴表示,目前研究团队正通过校企合作,积极推进符合产业化需求的高性能钙钛矿太阳能电池模组的研发,力求尽快推动研究成果的实际应用与产业化落地。
技术前沿
单片集成互补逻辑电路与高速光互联建立在无数金属-半导体接触基础之上,而低电阻且耐久的欧姆接触是制约超宽禁带半导体光电子器件性能与应用的一大因素。
近日,哈工大红外薄膜与晶体团队创新提出过渡金属(TMs)金属化方法,首次在绝缘的氧终端本征金刚石(OTD)表面制备出了有效欧姆接触,10-8 Ωcm2级别极低比接触电阻打破了金刚石器件领域近三十年的记录。
通过对界面结构的微观表征,发现TMs扩散进金刚石中产生的浅层晶格损伤是形成欧姆接触的关键原因,改变了界面过渡金属碳化物(TMC)的生成是金刚石欧姆接触的成因这一传统认知。从而扩展了在金刚石上制备稳定低阻欧姆接触的方法与理论,有望推动金刚石基高频高功率电子器件与高性能光电器件产业的发展。
相关成果以Record Low Contact Resistivity of 10-8Ω cm2Ohmic Contacts on Oxygen-Terminated Intrinsic Diamond by Transition Metals Metallization为题发表在国际微电子领域权威期刊《IEEE Electron Device Letters》,并申请多项中国发明专利。第一作者为博士生范赛飞,通讯作者为副教授刘康与教授朱嘉琦。
微电子领域权威期刊《IEEE Electron Device Letters》,并申请多项中国发明专利。第一作者为博士生范赛飞,通讯作者为副教授刘康与教授朱嘉琦。
/ 背景介绍 /
金刚石作为UWBG半导体的代表,因其宽带隙、最高的机械强度与热导率、高载流子迁移率、高击穿场强与化学惰性等优异特性,被公认为终极半导体材料,在功率电子器件、深紫外光电子学、量子信息及极端环境应用等领域具有不可代替的优势。
除了高质量晶体材料的获得与有效掺杂的制备,限制UWBG半导体材料光电子器件发展的一大制约因素即缺乏高效且耐久的欧姆接触。欧姆接触是一种具有低接触电阻的金属-半导体接触,接触界面的导电遵循金属欧姆定律,即电流与电压成正比。欧姆接触通常制作在高导电的重掺杂半导体表面,其势垒变得极薄,有利于载流子隧穿通过。由于p型掺杂的成功,掺硼金刚石表面的钛基欧姆接触和氢终端金刚石表面的贵金属欧姆接触已得到广泛应用,金刚石肖特基二极管与场效应晶体管得以实现。
然而相同欧姆接触制备工艺在具有稳定绝缘表面、奇异能带结构和极低载流子浓度的OTD上则难以实现,限制了极端环境下高性能光电子器件的发展,这不仅会导致功率二极管输出电流和整流比降低,晶体管开关比下降,光电探测器响应度和外量子效率降低,而且不良的附着力还会大大降低器件可靠性。因此,探索基于OTD的优异欧姆接触势在必行,以充分释放其作为终极半导体的潜力,并提升其商业应用价值。
/ 研究内容 /
在前人对掺硼金刚石钛基欧姆接触的研究基础上,作者提出损伤层概念假设:只要能在金刚石表面形成深入耗尽层的“导电损伤层”,便可在电极接触与体金刚石之间形成跨越势垒的电接触。此举或能解决制备OTD器件欧姆接触的难题。为验证假设的可行性,创新使用TMs(包括Pt、Ru、W、Cr、Zr和V)对OTD进行深度金属化处理,以形成更深的金刚石损伤层。实验结果表明,金属化处理后,所用TMs均能在OTD表面形成低阻欧姆接触,且牢固附着在金刚石表面,显示出比氢终端金刚石欧姆接触更高的可靠性。
图1. (a) 制造过程示意图。(b) 样品光学照片。(c) 六种TMs接触的I-V特性曲线。(d)ρc值随温度T的变化图,彩色条带为拟合线。(e) 测得的ρc值及其与其他金刚石欧姆接触的比较。
由于OTD本征电阻率极高,导通电流仅为皮安(10-12 A)级别,极易受到外界噪声等波动造成基线偏移,使用传输线理论(TLM)进行欧姆接触比接触电阻率(ρc)的测量是极为困难的。考虑测得的总电阻可等效于沟道电阻Rs与ρc之和。为减少Rs,将金属化后的样品进行氢终端处理,以获得具有二维空穴气(2DHG)导电的沟道。在氢终端处理后,对样品进行了多次ρc测量,实测Pt接触实现了2.5×10-8 Ω cm2的超低ρc值,打破了金刚石欧姆接触领域近三十年来最低记录。
为了排除2DHG导电沟道对欧姆接触形成的影响,我们使用氧等离子将暴露的金刚石表面重新处理为氧终端。如图2所示,I-V特性依然保持线性,但电流显着减小(与图1c相比)。这表明,在退火条件下过渡金属与金刚石的界面反应是形成欧姆接触的原因,而氢终端的2DHG沟道仅降低Rs以方便测试,并不会导致电极侧面短路。
图2. 经过氧等离子体再处理后的Pt、Zr、W和V欧姆接触的I-V特性。
为探究本研究中高功函数TMs与金刚石之间界面反应与传统Ti基接触的不同,表征了Pt与W接触的键合界面。深度共聚焦拉曼光谱表征结果显示,使用5 nm的半透明TMs对金刚石金属化处理后,出现了金刚石NV色心荧光强度的显著提升,而Pt还显示出sp2碳催化能力,如图3所示。我们收集了自表面起不同深度的NV色心与石墨碳峰的相对强度变化,发现两者均显示出随深度指数型降低的结果,而且降低规律遵循菲克第一扩散定律。NV色心发射强度显著增强原自金刚石与过渡金属高温反应生成的大量碳空位。金属化后,金刚石晶格产生大量损伤,其中的碳空位在热力学和浓度梯度的驱动下,会扩散至金刚石内部,随后被均匀分布的氮杂质捕获并结合,形成更加稳定的NV色心结构。这为定点制备金刚石浅层色心提供了简单高效的方法,有望推动固态量子光源建设。
图3. (a) 在无金属覆盖的空白OTD和薄层金属化后OTD拉曼光谱。(b) NV色心和石墨碳相对强度随金属化样品深度变化的曲线图。拟合曲线(灰色虚线)及相应函数如图(b)所示。
深度刻蚀XPS光谱表征结果显示,使用W对金刚石金属化后,金刚石亚表面的W主要以碳化物形式存在。从深度剖面图可以得出,sp3碳含量保持恒定,表明刻蚀范围位于金刚石内部而非纯碳化钨层;内部的sp2碳含量很可能是由Ar+轰击产生的主要产物。可以得出,经W金属化后的金刚石近表面层主要由一层受损的“掺杂”有W2C及少量WOx的金刚石薄层构成。
图4. 通过5 nm钨金属化的样品的XPS光谱。(a) 制备表面拟合的C1s光谱。(b)每次蚀刻后的C1s光谱瀑布图,其中77秒蚀刻时间的光谱被拟合。(c) 每次蚀刻后的W4f光谱瀑布图,制备表面的光谱被拟合。(d)-(f) 分别从所有元素扫描、C1s和W4f光谱中提取的深度剖面。
图5展示了通过5nm铂金属化的样品的深度刻蚀XPS光谱。图5a中可见非对称的sp2碳峰。图5b中的对称O1s峰和图5c中不对称的双重Pt4f峰表明,Pt元素以金属态扩散分布于样品内部。可以推断出,Pt金属化后处理的金刚石亚表面呈现出由大量sp²碳、少量金属Pt及金刚石相构成的渐变混合状态。而金属化处理过程中Pt保持零价金属态,未生成氧化物或碳化物,但仍能实现低电阻欧姆接触,这与Ti基欧姆接触结果显著不同。
图5. 经5 nm铂金属化样品的XPS光谱。(a) 归一化拟合C1s XPS光谱的三维瀑布图。拟合光谱从原始表面扫描,以表征内部碳的各种成分。(b) 蚀刻前的O1s XPS光谱。(c)从第五次蚀刻扫描的Pt4f XPS光谱。(d) 和 (e) 从所有元素扫描及C1s光谱提取的深度剖面图。
为了获取混合损伤界面的微观形貌信息,我们对使用Pt金属化后的金刚石拍摄了界面透射电镜(XTEM),如图6所示。Pt与金刚石晶格之间存在一层薄约5nm的无定形碳(a-C)。放大后显示,表层金刚石晶格中充满了碳空位或孔洞缺陷,快速傅里叶变化(FFT)衍射图案也显示出非对称的形态,表明金刚石晶格经受严重损伤。而a-C的FFT则显示出无定形材料典型的光晕特征。元素mapping显示Pt与金刚石之间界面清晰,并未产生碳化物中间层。证明了上述光谱表征结果。
图6. 基于Pt的欧姆接触的XTEM图像。(a) Pt与金刚石晶格间存在一层薄的a-C层。(b) 界面下方受损的金刚石晶格及其对应的FFT插图。(c)界面下方的无定形碳及其对应的FFT插图。(d)界面的元素映射图。
在使用TMs对金刚石进行金属化后,金刚石欧姆接触的亚表面层并非如先前所认为的那样,是具有清晰界面的纯TMC层,而是受到了损伤的金刚石,其内掺入了大量sp2碳、空位缺陷、TMC或其他电活性缺陷,类似于离子注入后的导电金刚石,因此形成了金属导电旁路(metal shunts),连接电极触点与块体金刚石内部,产生极低的接触电阻率与势垒。这种金属导电特性与传统热电子发射或场发射模式下的载流子传输机制相悖,后者中接触电阻率随温度升高而降低。在宽禁带III-V族半导体的合金欧姆接触中是常见的机制。同时,我们发现,Pt和其他不易氧化的惰性TMs,其金半接触性能不仅与传统钛基欧姆接触相当,甚至更优。因此,它们可作为制备金刚石欧姆接触的更为简便、稳定且耐久的替代方案。
使用TMs(包括Pt、Ru、W、Cr、Zr和V)对OTD进行深度金属化处理,以形成更深的金刚石损伤层。实验结果表明,金属化处理后,所用TMs均能在OTD表面形成低阻欧姆接触,且牢固附着在金刚石表面,显示出比氢终端金刚石欧姆接触更高的可靠性。
图1. (a) 制造过程示意图。(b) 样品光学照片。(c) 六种TMs接触的I-V特性曲线。(d)ρc值随温度T的变化图,彩色条带为拟合线。(e) 测得的ρc值及其与其他金刚石欧姆接触的比较。
由于OTD本征电阻率极高,导通电流仅为皮安(10-12 A)级别,极易受到外界噪声等波动造成基线偏移,使用传输线理论(TLM)进行欧姆接触比接触电阻率(ρc)的测量是极为困难的。考虑测得的总电阻可等效于沟道电阻Rs与ρc之和。为减少Rs,将金属化后的样品进行氢终端处理,以获得具有二维空穴气(2DHG)导电的沟道。在氢终端处理后,对样品进行了多次ρc测量,实测Pt接触实现了2.5×10-8 Ω cm2的超低ρc值,打破了金刚石欧姆接触领域近三十年来最低记录。
为了排除2DHG导电沟道对欧姆接触形成的影响,我们使用氧等离子将暴露的金刚石表面重新处理为氧终端。如图2所示,I-V特性依然保持线性,但电流显着减小(与图1c相比)。这表明,在退火条件下过渡金属与金刚石的界面反应是形成欧姆接触的原因,而氢终端的2DHG沟道仅降低Rs以方便测试,并不会导致电极侧面短路。
图2. 经过氧等离子体再处理后的Pt、Zr、W和V欧姆接触的I-V特性。
为探究本研究中高功函数TMs与金刚石之间界面反应与传统Ti基接触的不同,表征了Pt与W接触的键合界面。深度共聚焦拉曼光谱表征结果显示,使用5 nm的半透明TMs对金刚石金属化处理后,出现了金刚石NV色心荧光强度的显著提升,而Pt还显示出sp2碳催化能力,如图3所示。我们收集了自表面起不同深度的NV色心与石墨碳峰的相对强度变化,发现两者均显示出随深度指数型降低的结果,而且降低规律遵循菲克第一扩散定律。NV色心发射强度显著增强原自金刚石与过渡金属高温反应生成的大量碳空位。金属化后,金刚石晶格产生大量损伤,其中的碳空位在热力学和浓度梯度的驱动下,会扩散至金刚石内部,随后被均匀分布的氮杂质捕获并结合,形成更加稳定的NV色心结构。这为定点制备金刚石浅层色心提供了简单高效的方法,有望推动固态量子光源建设。
图3. (a) 在无金属覆盖的空白OTD和薄层金属化后OTD拉曼光谱。(b) NV色心和石墨碳相对强度随金属化样品深度变化的曲线图。拟合曲线(灰色虚线)及相应函数如图(b)所示。
深度刻蚀XPS光谱表征结果显示,使用W对金刚石金属化后,金刚石亚表面的W主要以碳化物形式存在。从深度剖面图可以得出,sp3碳含量保持恒定,表明刻蚀范围位于金刚石内部而非纯碳化钨层;内部的sp2碳含量很可能是由Ar+轰击产生的主要产物。可以得出,经W金属化后的金刚石近表面层主要由一层受损的“掺杂”有W2C及少量WOx的金刚石薄层构成。
图4. 通过5 nm钨金属化的样品的XPS光谱。(a) 制备表面拟合的C1s光谱。(b)每次蚀刻后的C1s光谱瀑布图,其中77秒蚀刻时间的光谱被拟合。(c) 每次蚀刻后的W4f光谱瀑布图,制备表面的光谱被拟合。(d)-(f) 分别从所有元素扫描、C1s和W4f光谱中提取的深度剖面。
图5展示了通过5nm铂金属化的样品的深度刻蚀XPS光谱。图5a中可见非对称的sp2碳峰。图5b中的对称O1s峰和图5c中不对称的双重Pt4f峰表明,Pt元素以金属态扩散分布于样品内部。可以推断出,Pt金属化后处理的金刚石亚表面呈现出由大量sp²碳、少量金属Pt及金刚石相构成的渐变混合状态。而金属化处理过程中Pt保持零价金属态,未生成氧化物或碳化物,但仍能实现低电阻欧姆接触,这与Ti基欧姆接触结果显著不同。
图5. 经5 nm铂金属化样品的XPS光谱。(a) 归一化拟合C1s XPS光谱的三维瀑布图。拟合光谱从原始表面扫描,以表征内部碳的各种成分。(b) 蚀刻前的O1s XPS光谱。(c)从第五次蚀刻扫描的Pt4f XPS光谱。(d) 和 (e) 从所有元素扫描及C1s光谱提取的深度剖面图。
为了获取混合损伤界面的微观形貌信息,我们对使用Pt金属化后的金刚石拍摄了界面透射电镜(XTEM),如图6所示。Pt与金刚石晶格之间存在一层薄约5nm的无定形碳(a-C)。放大后显示,表层金刚石晶格中充满了碳空位或孔洞缺陷,快速傅里叶变化(FFT)衍射图案也显示出非对称的形态,表明金刚石晶格经受严重损伤。而a-C的FFT则显示出无定形材料典型的光晕特征。元素mapping显示Pt与金刚石之间界面清晰,并未产生碳化物中间层。证明了上述光谱表征结果。
图6. 基于Pt的欧姆接触的XTEM图像。(a) Pt与金刚石晶格间存在一层薄的a-C层。(b) 界面下方受损的金刚石晶格及其对应的FFT插图。(c)界面下方的无定形碳及其对应的FFT插图。(d)界面的元素映射图。
在使用TMs对金刚石进行金属化后,金刚石欧姆接触的亚表面层并非如先前所认为的那样,是具有清晰界面的纯TMC层,而是受到了损伤的金刚石,其内掺入了大量sp2碳、空位缺陷、TMC或其他电活性缺陷,类似于离子注入后的导电金刚石,因此形成了金属导电旁路(metal shunts),连接电极触点与块体金刚石内部,产生极低的接触电阻率与势垒。这种金属导电特性与传统热电子发射或场发射模式下的载流子传输机制相悖,后者中接触电阻率随温度升高而降低。在宽禁带III-V族半导体的合金欧姆接触中是常见的机制。同时,我们发现,Pt和其他不易氧化的惰性TMs,其金半接触性能不仅与传统钛基欧姆接触相当,甚至更优。因此,它们可作为制备金刚石欧姆接触的更为简便、稳定且耐久的替代方案。
图1. (a) 制造过程示意图。(b) 样品光学照片。(c) 六种TMs接触的I-V特性曲线。(d)ρc值随温度T的变化图,彩色条带为拟合线。(e) 测得的ρc值及其与其他金刚石欧姆接触的比较。
由于OTD本征电阻率极高,导通电流仅为皮安(10-12 A)级别,极易受到外界噪声等波动造成基线偏移,使用传输线理论(TLM)进行欧姆接触比接触电阻率(ρc)的测量是极为困难的。考虑测得的总电阻可等效于沟道电阻Rs与ρc之和。为减少Rs,将金属化后的样品进行氢终端处理,以获得具有二维空穴气(2DHG)导电的沟道。在氢终端处理后,对样品进行了多次ρc测量,实测Pt接触实现了2.5×10-8 Ω cm2的超低ρc值,打破了金刚石欧姆接触领域近三十年来最低记录。
为了排除2DHG导电沟道对欧姆接触形成的影响,我们使用氧等离子将暴露的金刚石表面重新处理为氧终端。如图2所示,I-V特性依然保持线性,但电流显着减小(与图1c相比)。这表明,在退火条件下过渡金属与金刚石的界面反应是形成欧姆接触的原因,而氢终端的2DHG沟道仅降低Rs以方便测试,并不会导致电极侧面短路。
图2. 经过氧等离子体再处理后的Pt、Zr、W和V欧姆接触的I-V特性。
为探究本研究中高功函数TMs与金刚石之间界面反应与传统Ti基接触的不同,表征了Pt与W接触的键合界面。深度共聚焦拉曼光谱表征结果显示,使用5 nm的半透明TMs对金刚石金属化处理后,出现了金刚石NV色心荧光强度的显著提升,而Pt还显示出sp2碳催化能力,如图3所示。我们收集了自表面起不同深度的NV色心与石墨碳峰的相对强度变化,发现两者均显示出随深度指数型降低的结果,而且降低规律遵循菲克第一扩散定律。NV色心发射强度显著增强原自金刚石与过渡金属高温反应生成的大量碳空位。金属化后,金刚石晶格产生大量损伤,其中的碳空位在热力学和浓度梯度的驱动下,会扩散至金刚石内部,随后被均匀分布的氮杂质捕获并结合,形成更加稳定的NV色心结构。这为定点制备金刚石浅层色心提供了简单高效的方法,有望推动固态量子光源建设。
图3. (a) 在无金属覆盖的空白OTD和薄层金属化后OTD拉曼光谱。(b) NV色心和石墨碳相对强度随金属化样品深度变化的曲线图。拟合曲线(灰色虚线)及相应函数如图(b)所示。
深度刻蚀XPS光谱表征结果显示,使用W对金刚石金属化后,金刚石亚表面的W主要以碳化物形式存在。从深度剖面图可以得出,sp3碳含量保持恒定,表明刻蚀范围位于金刚石内部而非纯碳化钨层;内部的sp2碳含量很可能是由Ar+轰击产生的主要产物。可以得出,经W金属化后的金刚石近表面层主要由一层受损的“掺杂”有W2C及少量WOx的金刚石薄层构成。
图4. 通过5 nm钨金属化的样品的XPS光谱。(a) 制备表面拟合的C1s光谱。(b)每次蚀刻后的C1s光谱瀑布图,其中77秒蚀刻时间的光谱被拟合。(c) 每次蚀刻后的W4f光谱瀑布图,制备表面的光谱被拟合。(d)-(f) 分别从所有元素扫描、C1s和W4f光谱中提取的深度剖面。
图5展示了通过5nm铂金属化的样品的深度刻蚀XPS光谱。图5a中可见非对称的sp2碳峰。图5b中的对称O1s峰和图5c中不对称的双重Pt4f峰表明,Pt元素以金属态扩散分布于样品内部。可以推断出,Pt金属化后处理的金刚石亚表面呈现出由大量sp²碳、少量金属Pt及金刚石相构成的渐变混合状态。而金属化处理过程中Pt保持零价金属态,未生成氧化物或碳化物,但仍能实现低电阻欧姆接触,这与Ti基欧姆接触结果显著不同。
图5. 经5 nm铂金属化样品的XPS光谱。(a) 归一化拟合C1s XPS光谱的三维瀑布图。拟合光谱从原始表面扫描,以表征内部碳的各种成分。(b) 蚀刻前的O1s XPS光谱。(c)从第五次蚀刻扫描的Pt4f XPS光谱。(d) 和 (e) 从所有元素扫描及C1s光谱提取的深度剖面图。
为了获取混合损伤界面的微观形貌信息,我们对使用Pt金属化后的金刚石拍摄了界面透射电镜(XTEM),如图6所示。Pt与金刚石晶格之间存在一层薄约5nm的无定形碳(a-C)。放大后显示,表层金刚石晶格中充满了碳空位或孔洞缺陷,快速傅里叶变化(FFT)衍射图案也显示出非对称的形态,表明金刚石晶格经受严重损伤。而a-C的FFT则显示出无定形材料典型的光晕特征。元素mapping显示Pt与金刚石之间界面清晰,并未产生碳化物中间层。证明了上述光谱表征结果。
图6. 基于Pt的欧姆接触的XTEM图像。(a) Pt与金刚石晶格间存在一层薄的a-C层。(b) 界面下方受损的金刚石晶格及其对应的FFT插图。(c)界面下方的无定形碳及其对应的FFT插图。(d)界面的元素映射图。
在使用TMs对金刚石进行金属化后,金刚石欧姆接触的亚表面层并非如先前所认为的那样,是具有清晰界面的纯TMC层,而是受到了损伤的金刚石,其内掺入了大量sp2碳、空位缺陷、TMC或其他电活性缺陷,类似于离子注入后的导电金刚石,因此形成了金属导电旁路(metal shunts),连接电极触点与块体金刚石内部,产生极低的接触电阻率与势垒。这种金属导电特性与传统热电子发射或场发射模式下的载流子传输机制相悖,后者中接触电阻率随温度升高而降低。在宽禁带III-V族半导体的合金欧姆接触中是常见的机制。同时,我们发现,Pt和其他不易氧化的惰性TMs,其金半接触性能不仅与传统钛基欧姆接触相当,甚至更优。因此,它们可作为制备金刚石欧姆接触的更为简便、稳定且耐久的替代方案。
图2. 经过氧等离子体再处理后的Pt、Zr、W和V欧姆接触的I-V特性。
为探究本研究中高功函数TMs与金刚石之间界面反应与传统Ti基接触的不同,表征了Pt与W接触的键合界面。深度共聚焦拉曼光谱表征结果显示,使用5 nm的半透明TMs对金刚石金属化处理后,出现了金刚石NV色心荧光强度的显著提升,而Pt还显示出sp2碳催化能力,如图3所示。我们收集了自表面起不同深度的NV色心与石墨碳峰的相对强度变化,发现两者均显示出随深度指数型降低的结果,而且降低规律遵循菲克第一扩散定律。NV色心发射强度显著增强原自金刚石与过渡金属高温反应生成的大量碳空位。金属化后,金刚石晶格产生大量损伤,其中的碳空位在热力学和浓度梯度的驱动下,会扩散至金刚石内部,随后被均匀分布的氮杂质捕获并结合,形成更加稳定的NV色心结构。这为定点制备金刚石浅层色心提供了简单高效的方法,有望推动固态量子光源建设。
图3. (a) 在无金属覆盖的空白OTD和薄层金属化后OTD拉曼光谱。(b) NV色心和石墨碳相对强度随金属化样品深度变化的曲线图。拟合曲线(灰色虚线)及相应函数如图(b)所示。
深度刻蚀XPS光谱表征结果显示,使用W对金刚石金属化后,金刚石亚表面的W主要以碳化物形式存在。从深度剖面图可以得出,sp3碳含量保持恒定,表明刻蚀范围位于金刚石内部而非纯碳化钨层;内部的sp2碳含量很可能是由Ar+轰击产生的主要产物。可以得出,经W金属化后的金刚石近表面层主要由一层受损的“掺杂”有W2C及少量WOx的金刚石薄层构成。
图4. 通过5 nm钨金属化的样品的XPS光谱。(a) 制备表面拟合的C1s光谱。(b)每次蚀刻后的C1s光谱瀑布图,其中77秒蚀刻时间的光谱被拟合。(c) 每次蚀刻后的W4f光谱瀑布图,制备表面的光谱被拟合。(d)-(f) 分别从所有元素扫描、C1s和W4f光谱中提取的深度剖面。
图5展示了通过5nm铂金属化的样品的深度刻蚀XPS光谱。图5a中可见非对称的sp2碳峰。图5b中的对称O1s峰和图5c中不对称的双重Pt4f峰表明,Pt元素以金属态扩散分布于样品内部。可以推断出,Pt金属化后处理的金刚石亚表面呈现出由大量sp²碳、少量金属Pt及金刚石相构成的渐变混合状态。而金属化处理过程中Pt保持零价金属态,未生成氧化物或碳化物,但仍能实现低电阻欧姆接触,这与Ti基欧姆接触结果显著不同。
图5. 经5 nm铂金属化样品的XPS光谱。(a) 归一化拟合C1s XPS光谱的三维瀑布图。拟合光谱从原始表面扫描,以表征内部碳的各种成分。(b) 蚀刻前的O1s XPS光谱。(c)从第五次蚀刻扫描的Pt4f XPS光谱。(d) 和 (e) 从所有元素扫描及C1s光谱提取的深度剖面图。
为了获取混合损伤界面的微观形貌信息,我们对使用Pt金属化后的金刚石拍摄了界面透射电镜(XTEM),如图6所示。Pt与金刚石晶格之间存在一层薄约5nm的无定形碳(a-C)。放大后显示,表层金刚石晶格中充满了碳空位或孔洞缺陷,快速傅里叶变化(FFT)衍射图案也显示出非对称的形态,表明金刚石晶格经受严重损伤。而a-C的FFT则显示出无定形材料典型的光晕特征。元素mapping显示Pt与金刚石之间界面清晰,并未产生碳化物中间层。证明了上述光谱表征结果。
图6. 基于Pt的欧姆接触的XTEM图像。(a) Pt与金刚石晶格间存在一层薄的a-C层。(b) 界面下方受损的金刚石晶格及其对应的FFT插图。(c)界面下方的无定形碳及其对应的FFT插图。(d)界面的元素映射图。
在使用TMs对金刚石进行金属化后,金刚石欧姆接触的亚表面层并非如先前所认为的那样,是具有清晰界面的纯TMC层,而是受到了损伤的金刚石,其内掺入了大量sp2碳、空位缺陷、TMC或其他电活性缺陷,类似于离子注入后的导电金刚石,因此形成了金属导电旁路(metal shunts),连接电极触点与块体金刚石内部,产生极低的接触电阻率与势垒。这种金属导电特性与传统热电子发射或场发射模式下的载流子传输机制相悖,后者中接触电阻率随温度升高而降低。在宽禁带III-V族半导体的合金欧姆接触中是常见的机制。同时,我们发现,Pt和其他不易氧化的惰性TMs,其金半接触性能不仅与传统钛基欧姆接触相当,甚至更优。因此,它们可作为制备金刚石欧姆接触的更为简便、稳定且耐久的替代方案。
图3. (a) 在无金属覆盖的空白OTD和薄层金属化后OTD拉曼光谱。(b) NV色心和石墨碳相对强度随金属化样品深度变化的曲线图。拟合曲线(灰色虚线)及相应函数如图(b)所示。
深度刻蚀XPS光谱表征结果显示,使用W对金刚石金属化后,金刚石亚表面的W主要以碳化物形式存在。从深度剖面图可以得出,sp3碳含量保持恒定,表明刻蚀范围位于金刚石内部而非纯碳化钨层;内部的sp2碳含量很可能是由Ar+轰击产生的主要产物。可以得出,经W金属化后的金刚石近表面层主要由一层受损的“掺杂”有W2C及少量WOx的金刚石薄层构成。
图4. 通过5 nm钨金属化的样品的XPS光谱。(a) 制备表面拟合的C1s光谱。(b)每次蚀刻后的C1s光谱瀑布图,其中77秒蚀刻时间的光谱被拟合。(c) 每次蚀刻后的W4f光谱瀑布图,制备表面的光谱被拟合。(d)-(f) 分别从所有元素扫描、C1s和W4f光谱中提取的深度剖面。
图5展示了通过5nm铂金属化的样品的深度刻蚀XPS光谱。图5a中可见非对称的sp2碳峰。图5b中的对称O1s峰和图5c中不对称的双重Pt4f峰表明,Pt元素以金属态扩散分布于样品内部。可以推断出,Pt金属化后处理的金刚石亚表面呈现出由大量sp²碳、少量金属Pt及金刚石相构成的渐变混合状态。而金属化处理过程中Pt保持零价金属态,未生成氧化物或碳化物,但仍能实现低电阻欧姆接触,这与Ti基欧姆接触结果显著不同。
图5. 经5 nm铂金属化样品的XPS光谱。(a) 归一化拟合C1s XPS光谱的三维瀑布图。拟合光谱从原始表面扫描,以表征内部碳的各种成分。(b) 蚀刻前的O1s XPS光谱。(c)从第五次蚀刻扫描的Pt4f XPS光谱。(d) 和 (e) 从所有元素扫描及C1s光谱提取的深度剖面图。
为了获取混合损伤界面的微观形貌信息,我们对使用Pt金属化后的金刚石拍摄了界面透射电镜(XTEM),如图6所示。Pt与金刚石晶格之间存在一层薄约5nm的无定形碳(a-C)。放大后显示,表层金刚石晶格中充满了碳空位或孔洞缺陷,快速傅里叶变化(FFT)衍射图案也显示出非对称的形态,表明金刚石晶格经受严重损伤。而a-C的FFT则显示出无定形材料典型的光晕特征。元素mapping显示Pt与金刚石之间界面清晰,并未产生碳化物中间层。证明了上述光谱表征结果。
图6. 基于Pt的欧姆接触的XTEM图像。(a) Pt与金刚石晶格间存在一层薄的a-C层。(b) 界面下方受损的金刚石晶格及其对应的FFT插图。(c)界面下方的无定形碳及其对应的FFT插图。(d)界面的元素映射图。
在使用TMs对金刚石进行金属化后,金刚石欧姆接触的亚表面层并非如先前所认为的那样,是具有清晰界面的纯TMC层,而是受到了损伤的金刚石,其内掺入了大量sp2碳、空位缺陷、TMC或其他电活性缺陷,类似于离子注入后的导电金刚石,因此形成了金属导电旁路(metal shunts),连接电极触点与块体金刚石内部,产生极低的接触电阻率与势垒。这种金属导电特性与传统热电子发射或场发射模式下的载流子传输机制相悖,后者中接触电阻率随温度升高而降低。在宽禁带III-V族半导体的合金欧姆接触中是常见的机制。同时,我们发现,Pt和其他不易氧化的惰性TMs,其金半接触性能不仅与传统钛基欧姆接触相当,甚至更优。因此,它们可作为制备金刚石欧姆接触的更为简便、稳定且耐久的替代方案。
图4. 通过5 nm钨金属化的样品的XPS光谱。(a) 制备表面拟合的C1s光谱。(b)每次蚀刻后的C1s光谱瀑布图,其中77秒蚀刻时间的光谱被拟合。(c) 每次蚀刻后的W4f光谱瀑布图,制备表面的光谱被拟合。(d)-(f) 分别从所有元素扫描、C1s和W4f光谱中提取的深度剖面。
图5展示了通过5nm铂金属化的样品的深度刻蚀XPS光谱。图5a中可见非对称的sp2碳峰。图5b中的对称O1s峰和图5c中不对称的双重Pt4f峰表明,Pt元素以金属态扩散分布于样品内部。可以推断出,Pt金属化后处理的金刚石亚表面呈现出由大量sp²碳、少量金属Pt及金刚石相构成的渐变混合状态。而金属化处理过程中Pt保持零价金属态,未生成氧化物或碳化物,但仍能实现低电阻欧姆接触,这与Ti基欧姆接触结果显著不同。
图5. 经5 nm铂金属化样品的XPS光谱。(a) 归一化拟合C1s XPS光谱的三维瀑布图。拟合光谱从原始表面扫描,以表征内部碳的各种成分。(b) 蚀刻前的O1s XPS光谱。(c)从第五次蚀刻扫描的Pt4f XPS光谱。(d) 和 (e) 从所有元素扫描及C1s光谱提取的深度剖面图。
为了获取混合损伤界面的微观形貌信息,我们对使用Pt金属化后的金刚石拍摄了界面透射电镜(XTEM),如图6所示。Pt与金刚石晶格之间存在一层薄约5nm的无定形碳(a-C)。放大后显示,表层金刚石晶格中充满了碳空位或孔洞缺陷,快速傅里叶变化(FFT)衍射图案也显示出非对称的形态,表明金刚石晶格经受严重损伤。而a-C的FFT则显示出无定形材料典型的光晕特征。元素mapping显示Pt与金刚石之间界面清晰,并未产生碳化物中间层。证明了上述光谱表征结果。
图6. 基于Pt的欧姆接触的XTEM图像。(a) Pt与金刚石晶格间存在一层薄的a-C层。(b) 界面下方受损的金刚石晶格及其对应的FFT插图。(c)界面下方的无定形碳及其对应的FFT插图。(d)界面的元素映射图。
在使用TMs对金刚石进行金属化后,金刚石欧姆接触的亚表面层并非如先前所认为的那样,是具有清晰界面的纯TMC层,而是受到了损伤的金刚石,其内掺入了大量sp2碳、空位缺陷、TMC或其他电活性缺陷,类似于离子注入后的导电金刚石,因此形成了金属导电旁路(metal shunts),连接电极触点与块体金刚石内部,产生极低的接触电阻率与势垒。这种金属导电特性与传统热电子发射或场发射模式下的载流子传输机制相悖,后者中接触电阻率随温度升高而降低。在宽禁带III-V族半导体的合金欧姆接触中是常见的机制。同时,我们发现,Pt和其他不易氧化的惰性TMs,其金半接触性能不仅与传统钛基欧姆接触相当,甚至更优。因此,它们可作为制备金刚石欧姆接触的更为简便、稳定且耐久的替代方案。
图5. 经5 nm铂金属化样品的XPS光谱。(a) 归一化拟合C1s XPS光谱的三维瀑布图。拟合光谱从原始表面扫描,以表征内部碳的各种成分。(b) 蚀刻前的O1s XPS光谱。(c)从第五次蚀刻扫描的Pt4f XPS光谱。(d) 和 (e) 从所有元素扫描及C1s光谱提取的深度剖面图。
为了获取混合损伤界面的微观形貌信息,我们对使用Pt金属化后的金刚石拍摄了界面透射电镜(XTEM),如图6所示。Pt与金刚石晶格之间存在一层薄约5nm的无定形碳(a-C)。放大后显示,表层金刚石晶格中充满了碳空位或孔洞缺陷,快速傅里叶变化(FFT)衍射图案也显示出非对称的形态,表明金刚石晶格经受严重损伤。而a-C的FFT则显示出无定形材料典型的光晕特征。元素mapping显示Pt与金刚石之间界面清晰,并未产生碳化物中间层。证明了上述光谱表征结果。
图6. 基于Pt的欧姆接触的XTEM图像。(a) Pt与金刚石晶格间存在一层薄的a-C层。(b) 界面下方受损的金刚石晶格及其对应的FFT插图。(c)界面下方的无定形碳及其对应的FFT插图。(d)界面的元素映射图。
在使用TMs对金刚石进行金属化后,金刚石欧姆接触的亚表面层并非如先前所认为的那样,是具有清晰界面的纯TMC层,而是受到了损伤的金刚石,其内掺入了大量sp2碳、空位缺陷、TMC或其他电活性缺陷,类似于离子注入后的导电金刚石,因此形成了金属导电旁路(metal shunts),连接电极触点与块体金刚石内部,产生极低的接触电阻率与势垒。这种金属导电特性与传统热电子发射或场发射模式下的载流子传输机制相悖,后者中接触电阻率随温度升高而降低。在宽禁带III-V族半导体的合金欧姆接触中是常见的机制。同时,我们发现,Pt和其他不易氧化的惰性TMs,其金半接触性能不仅与传统钛基欧姆接触相当,甚至更优。因此,它们可作为制备金刚石欧姆接触的更为简便、稳定且耐久的替代方案。
图6. 基于Pt的欧姆接触的XTEM图像。(a) Pt与金刚石晶格间存在一层薄的a-C层。(b) 界面下方受损的金刚石晶格及其对应的FFT插图。(c)界面下方的无定形碳及其对应的FFT插图。(d)界面的元素映射图。
在使用TMs对金刚石进行金属化后,金刚石欧姆接触的亚表面层并非如先前所认为的那样,是具有清晰界面的纯TMC层,而是受到了损伤的金刚石,其内掺入了大量sp2碳、空位缺陷、TMC或其他电活性缺陷,类似于离子注入后的导电金刚石,因此形成了金属导电旁路(metal shunts),连接电极触点与块体金刚石内部,产生极低的接触电阻率与势垒。这种金属导电特性与传统热电子发射或场发射模式下的载流子传输机制相悖,后者中接触电阻率随温度升高而降低。在宽禁带III-V族半导体的合金欧姆接触中是常见的机制。同时,我们发现,Pt和其他不易氧化的惰性TMs,其金半接触性能不仅与传统钛基欧姆接触相当,甚至更优。因此,它们可作为制备金刚石欧姆接触的更为简便、稳定且耐久的替代方案。
专业评论
今天,在中国电力企业联合会举办的新型电力系统发展(崇礼)论坛上,华为董事、华为数字能源总裁侯金龙发表了“积极推进构网型储能产业高质量发展,助力新型电力系统建设”的主题演讲。侯金龙表示:“随着新能源的快速发展,全球电力系统进入可再生能源高渗透率阶段,给电网稳定运行带来挑战,成为全球新能源发展难题。构网技术作为新型电力系统的关键支撑技术之一,已经成为各国电力系统科技创新的技术高地。华为数字能源在新能源并网、电网友好技术领域持续积累,不断推动并网友好性技术从‘跟随电网’、‘支撑电网’走向‘增强电网’,为建设新型电力系统贡献力量。”
近年来,光伏、风电产业快速发展,未来还有更大的发展空间。按照COP28的规划,到2030年,可再生能源装机要达到2022年的3倍,超过1.1万GW。但新能源快速消耗电力系统灵活调节资源,其随机性、波动性、间歇性的特点使电力系统平衡和安全问题更加突出。构网技术是提升新能源主动支撑能力的关键技术,各国正从技术标准、政策等方面大力推动发展以及在商业项目应用。
华为持续投入新能源并网的安全稳定性研究,助力产业发展
从2011年起,华为一直压强式投入新能源并网的安全稳定性研究,助力产业可持续发展,并在国内外多个场景和项目进行了应用。在中东,沙特红海新城首期400MW光伏和1.3GWh储能系统,全部采用华为智能组串式构网型储能解决方案,从2023年9月全部投入运营,提供了超过10亿度绿色电力,是全球首个100%可再生能源供电的城市微网。该项目已安全稳定运行一年,从1000台PCS同步构网、分钟级电力恢复、抗100%变压器投切冲击、离网零电压故障穿越等方面对关键构网技术进行了充分验证。在红海新城项目上积累的构网技术,正在向矿山、岛屿等微网场景推广应用。采用光风储融合构网技术来构建矿山微网,不仅大大提高供电可靠性,还可降低用电成本50%以上。当前,在非洲、拉美等地已完成交付10多个矿山、岛屿微网。未来,构网型微网技术将应用到全球更多地方,助力当地消除电力鸿沟。
联合电网、发电企业共同推进构网型储能实证
在国内,华为联合电网、发电企业共同推进构网型储能项目实证,已在青海等地的5个项目上,开展了多场景、多工况的构网型储能实证测试,在项目测试的全面性、规模、测试的性能指标等方面均取得满意成果。在单元级、电站级、区域电网仿真、离网等全场景开展了全面测试,针对构网技术关键指标完成超过2300多个测试项。在哈密的华润电力风电站,处于直流特高压线路送端,建设了百MWh风电站构网型储能项目,并开展了全面、系统的构网技术测试。在青海格尔木中国绿发的多能互补百MWh构网型储能电站,一次性通过了35kV、110kV人工短路试验,结果显示600台PCS零脱网,10ms内快速输出3倍视在电流和2.8倍不对称电流,有效支撑电网电压。在阿里藏开投光伏电站,高海拔、极弱电网环境下,建设了24MWh构网型储能电站,一次性通过35kV人工短路试验,实现PCS零脱网,10ms内快速输出3倍视在电流,支撑功率平滑无波动,无恢复过电压。
通过从多场站级自同步幅频调制技术、宽频自稳和致稳控制技术、新型智能组串式储能双级变换架构、构网型储能功率模组和控制芯片等四个方面,对华为智能组串式构网型储能技术进行了系统测试,从而验证了高比例新能源多场景下对电力系统的支撑作用。2024年7月,在由中国电机工程学会组织的“适用于高比例新能源多场景的智能组串式构网型储能系统关键技术及应用”技术鉴定会上,来自中国科学院、中国工程院的多位资深院士、国家电网等单位的十几位专家组成的鉴定专家委员会一致认为,申请技术鉴定的项目针对高比例新能源背景下提升新型电力系统稳定水平与新能源并网消纳的需求,实现了工程应用。项目整体处于国际领先水平。
构网技术的多场景推广价值以及构网型储能产业高质量发展的思考和建议
构网技术作为一种基于电力电子和数字化的创新技术,可在新型电力系统建设过程中,有效提升电力系统稳定性,具备多场景推广价值:
● 在发电侧,针对清洁能源基地,弱电网区域新能源集中接入场景,可以大大提升新能源场站主动支撑能力,实现更高比例新能源并网。
● 在电网侧,针对特高压线路受端,负荷中心电源空心化区域等场景,可以增强系统的灵活调节、可靠运行能力。
● 在用电侧,针对电网末端源网荷储、微电网供电区域,以及高原、矿山、岛屿,可以实现100%新能源区域电网以及并离网供电。
最后,为推进构网型储能产业高质量发展,让创新要素发挥更大的产业促进作用,侯金龙提出了三个方面的思考与建议,包括逐步扩大构网型储能应用规模,在应用中成熟和完善;建立构网型储能高质量标准体系;形成有利于构网型储能高质量发展的市场机制。展望未来,华为数字能源将持续融合Bit(数字化技术)、Watt(电力电子技术)、Heat(热管理技术)、Battery(储能管理技术)等4T技术,提供高质量、高安全、高可靠的关键装备,携手客户、伙伴积极推进构网型储能产业高质量发展,为新型电力系统、新型能源体系的建设与发展贡献华为力量!
华为持续投入新能源并网的安全稳定性研究,助力产业发展
从2011年起,华为一直压强式投入新能源并网的安全稳定性研究,助力产业可持续发展,并在国内外多个场景和项目进行了应用。在中东,沙特红海新城首期400MW光伏和1.3GWh储能系统,全部采用华为智能组串式构网型储能解决方案,从2023年9月全部投入运营,提供了超过10亿度绿色电力,是全球首个100%可再生能源供电的城市微网。该项目已安全稳定运行一年,从1000台PCS同步构网、分钟级电力恢复、抗100%变压器投切冲击、离网零电压故障穿越等方面对关键构网技术进行了充分验证。在红海新城项目上积累的构网技术,正在向矿山、岛屿等微网场景推广应用。采用光风储融合构网技术来构建矿山微网,不仅大大提高供电可靠性,还可降低用电成本50%以上。当前,在非洲、拉美等地已完成交付10多个矿山、岛屿微网。未来,构网型微网技术将应用到全球更多地方,助力当地消除电力鸿沟。
联合电网、发电企业共同推进构网型储能实证
在国内,华为联合电网、发电企业共同推进构网型储能项目实证,已在青海等地的5个项目上,开展了多场景、多工况的构网型储能实证测试,在项目测试的全面性、规模、测试的性能指标等方面均取得满意成果。在单元级、电站级、区域电网仿真、离网等全场景开展了全面测试,针对构网技术关键指标完成超过2300多个测试项。在哈密的华润电力风电站,处于直流特高压线路送端,建设了百MWh风电站构网型储能项目,并开展了全面、系统的构网技术测试。在青海格尔木中国绿发的多能互补百MWh构网型储能电站,一次性通过了35kV、110kV人工短路试验,结果显示600台PCS零脱网,10ms内快速输出3倍视在电流和2.8倍不对称电流,有效支撑电网电压。在阿里藏开投光伏电站,高海拔、极弱电网环境下,建设了24MWh构网型储能电站,一次性通过35kV人工短路试验,实现PCS零脱网,10ms内快速输出3倍视在电流,支撑功率平滑无波动,无恢复过电压。
通过从多场站级自同步幅频调制技术、宽频自稳和致稳控制技术、新型智能组串式储能双级变换架构、构网型储能功率模组和控制芯片等四个方面,对华为智能组串式构网型储能技术进行了系统测试,从而验证了高比例新能源多场景下对电力系统的支撑作用。2024年7月,在由中国电机工程学会组织的“适用于高比例新能源多场景的智能组串式构网型储能系统关键技术及应用”技术鉴定会上,来自中国科学院、中国工程院的多位资深院士、国家电网等单位的十几位专家组成的鉴定专家委员会一致认为,申请技术鉴定的项目针对高比例新能源背景下提升新型电力系统稳定水平与新能源并网消纳的需求,实现了工程应用。项目整体处于国际领先水平。
构网技术的多场景推广价值以及构网型储能产业高质量发展的思考和建议
构网技术作为一种基于电力电子和数字化的创新技术,可在新型电力系统建设过程中,有效提升电力系统稳定性,具备多场景推广价值:
● 在发电侧,针对清洁能源基地,弱电网区域新能源集中接入场景,可以大大提升新能源场站主动支撑能力,实现更高比例新能源并网。
● 在电网侧,针对特高压线路受端,负荷中心电源空心化区域等场景,可以增强系统的灵活调节、可靠运行能力。
● 在用电侧,针对电网末端源网荷储、微电网供电区域,以及高原、矿山、岛屿,可以实现100%新能源区域电网以及并离网供电。
最后,为推进构网型储能产业高质量发展,让创新要素发挥更大的产业促进作用,侯金龙提出了三个方面的思考与建议,包括逐步扩大构网型储能应用规模,在应用中成熟和完善;建立构网型储能高质量标准体系;形成有利于构网型储能高质量发展的市场机制。展望未来,华为数字能源将持续融合Bit(数字化技术)、Watt(电力电子技术)、Heat(热管理技术)、Battery(储能管理技术)等4T技术,提供高质量、高安全、高可靠的关键装备,携手客户、伙伴积极推进构网型储能产业高质量发展,为新型电力系统、新型能源体系的建设与发展贡献华为力量!
试的性能指标等方面均取得满意成果。在单元级、电站级、区域电网仿真、离网等全场景开展了全面测试,针对构网技术关键指标完成超过2300多个测试项。在哈密的华润电力风电站,处于直流特高压线路送端,建设了百MWh风电站构网型储能项目,并开展了全面、系统的构网技术测试。在青海格尔木中国绿发的多能互补百MWh构网型储能电站,一次性通过了35kV、110kV人工短路试验,结果显示600台PCS零脱网,10ms内快速输出3倍视在电流和2.8倍不对称电流,有效支撑电网电压。在阿里藏开投光伏电站,高海拔、极弱电网环境下,建设了24MWh构网型储能电站,一次性通过35kV人工短路试验,实现PCS零脱网,10ms内快速输出3倍视在电流,支撑功率平滑无波动,无恢复过电压。
通过从多场站级自同步幅频调制技术、宽频自稳和致稳控制技术、新型智能组串式储能双级变换架构、构网型储能功率模组和控制芯片等四个方面,对华为智能组串式构网型储能技术进行了系统测试,从而验证了高比例新能源多场景下对电力系统的支撑作用。2024年7月,在由中国电机工程学会组织的“适用于高比例新能源多场景的智能组串式构网型储能系统关键技术及应用”技术鉴定会上,来自中国科学院、中国工程院的多位资深院士、国家电网等单位的十几位专家组成的鉴定专家委员会一致认为,申请技术鉴定的项目针对高比例新能源背景下提升新型电力系统稳定水平与新能源并网消纳的需求,实现了工程应用。项目整体处于国际领先水平。
构网技术的多场景推广价值以及构网型储能产业高质量发展的思考和建议
构网技术作为一种基于电力电子和数字化的创新技术,可在新型电力系统建设过程中,有效提升电力系统稳定性,具备多场景推广价值:
● 在发电侧,针对清洁能源基地,弱电网区域新能源集中接入场景,可以大大提升新能源场站主动支撑能力,实现更高比例新能源并网。
● 在电网侧,针对特高压线路受端,负荷中心电源空心化区域等场景,可以增强系统的灵活调节、可靠运行能力。
● 在用电侧,针对电网末端源网荷储、微电网供电区域,以及高原、矿山、岛屿,可以实现100%新能源区域电网以及并离网供电。
最后,为推进构网型储能产业高质量发展,让创新要素发挥更大的产业促进作用,侯金龙提出了三个方面的思考与建议,包括逐步扩大构网型储能应用规模,在应用中成熟和完善;建立构网型储能高质量标准体系;形成有利于构网型储能高质量发展的市场机制。展望未来,华为数字能源将持续融合Bit(数字化技术)、Watt(电力电子技术)、Heat(热管理技术)、Battery(储能管理技术)等4T技术,提供高质量、高安全、高可靠的关键装备,携手客户、伙伴积极推进构网型储能产业高质量发展,为新型电力系统、新型能源体系的建设与发展贡献华为力量!
构网技术的多场景推广价值以及构网型储能产业高质量发展的思考和建议
构网技术作为一种基于电力电子和数字化的创新技术,可在新型电力系统建设过程中,有效提升电力系统稳定性,具备多场景推广价值:
● 在发电侧,针对清洁能源基地,弱电网区域新能源集中接入场景,可以大大提升新能源场站主动支撑能力,实现更高比例新能源并网。
● 在电网侧,针对特高压线路受端,负荷中心电源空心化区域等场景,可以增强系统的灵活调节、可靠运行能力。
● 在用电侧,针对电网末端源网荷储、微电网供电区域,以及高原、矿山、岛屿,可以实现100%新能源区域电网以及并离网供电。
最后,为推进构网型储能产业高质量发展,让创新要素发挥更大的产业促进作用,侯金龙提出了三个方面的思考与建议,包括逐步扩大构网型储能应用规模,在应用中成熟和完善;建立构网型储能高质量标准体系;形成有利于构网型储能高质量发展的市场机制。展望未来,华为数字能源将持续融合Bit(数字化技术)、Watt(电力电子技术)、Heat(热管理技术)、Battery(储能管理技术)等4T技术,提供高质量、高安全、高可靠的关键装备,携手客户、伙伴积极推进构网型储能产业高质量发展,为新型电力系统、新型能源体系的建设与发展贡献华为力量!
展会时间:2025年03月10日---03月12日
展会地点:上海世博展览馆 上海市浦东新区国展路1099号
主办单位:新之联伊丽斯(上海)展览有限公司
会议背景
上海国际增材制造应用技术展览会(AM China)以“应用需求”为导向,汇聚全球增材制造行业的优秀企业,为航空航天、汽车工业、船舶制造、轨道交通、电子电器、模具制造、医疗健康、文化创意、教育科研、建筑装饰……等行业用户提供定制化的解决方案和专业服务。
以展聚力,以会谋机。展会和论坛秉承“专业化、市场化、国际化”理念,以创新成果树立行业标杆、以龙头企业引领行业趋势、以丰富活动推升行业热度、以深度交流落实办会宗旨,由一场高规格的开幕活动、多场高水平的同期活动组成,以创新链、产业链、资金链、人才链构建增材制造产业生态,贯穿增材制造产业全生命周期,覆盖上游、中游、下游的“全品类、全链条”,多维度呈现增材制造产业全景图谱。亮点纷呈,不容错过!
邮箱:hycydt123@163.com
地址:山西省阳泉市矿区桃北西街2号
邮箱:hycydt123@163.com
地址:山西省阳泉市矿区桃北西街2号